A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions

نویسندگان

چکیده

The valorization of algal biomass and bi-valve shells allows synthesizing, in the presence urea, a sorbent highly efficient for methylene blue (MB) sorption (sorption capacity: 1.5 mmol MB g?1 at pH 5.8). dye-functionalized shows enhanced properties Cr(VI) recovery 3. isotherm is fitted by Langmuir equation: maximum capacity reaches 8.53 Cr (for MB-loading: g?1). Different mechanisms may be involved such as electrostatic attraction anionic species, chelation on reactive groups, reduction into Cr(III). Under selected experimental conditions, achieved within less than 60 m. kinetic profiles are controlled pseudo-second order rate equation. Alkaline NaCl solutions effciently desorb chromate while maintaining good stability dye (negligible release). Therefore, desorption performances maintained remarkably stable least 5 sorption/desorption cycles. successfully applied from Cr(VI)–spiked (tap water wastewater petrochemical unit) with limited loss performances. characterized BET, TGA, FTIR, SEM, EDX zetametry to help understanding binding

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study for the Removal of Methylene Blue Dye from Aqueous Solution by Novel Activated Carbon Based Adsorbents

This study was conducted to assess the ability of the studied adsorbent, i.e. raw oak fruit hulls and the activated carbon prepared from oak fruit hull for removing the Methylene blue (MB) from aqueous solution. This study was conducted under various effective parameters, e.g., contact time, pH, MB concentration, adsorbent concentration. The optimum amount of each parameter was determined a...

متن کامل

Evaluation Low Cost Adsorbent of Walnut Bark Granule for Methylene Blue Dye Removal from Aqueous Environments

Background & Aims of the Study: Methylene blue (MB) is a risk for human and environment. Adsorption process is one of the removal mechanisms of MB. The purpose of this research was the evaluation of low cost adsorbent of walnut bark granule for MB dye removal from aqueous environments. Materials & Methods: In this experimental research, the effect of various operating parameters...

متن کامل

Evaluation of the Efficiency Adsorption Process with Zeolite@ in the Removal of Methylene Blue Dye from Aqueous Solutions

Introduction: Dyes are materials with a complex structure that enter the environment from textile processes such as dyeing and washing. The aim of this study was to investigate the efficiency of the absorption process using Zeolite @ ZnO in removing methylene blue dye from textile wastewater. Methods: The structure and morphology of nanoparticles were examined using XRF, FTIR and FESEM techniq...

متن کامل

Removal of methylene blue dye aqueous solution using photocatalysis

The nano sized TiO2 and ZnO are the most active photocatalysts.  Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...

متن کامل

Removal of methylene blue dye aqueous solution using photocatalysis

The nano sized TiO2 and ZnO are the most active photocatalysts.  Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of environmental chemical engineering

سال: 2021

ISSN: ['2213-2929', '2213-3437']

DOI: https://doi.org/10.1016/j.jece.2020.104767